

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Mechanics M1 (WME01) Paper 01

Question Number	Scheme	Mar	ks
	R $2R$		
1.	2.5 m 4.5 m 2 m		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$d \text{ m}$ $Mg \checkmark$ 1st Equation in d (or another defined unknown). R and M (as appropriate) only	M1 A1	
	1st Equation in d (or another defined unknown), R and M (as appropriate) only 2nd Equation in d (or the same defined unknown, R and M (as appropriate)		
	only	M1 A1	
	Possible equations:		
	$(\uparrow), R+2R=Mg$		
	$M(C), 2R \times 4.5 = Mg(d-2.5)$		
	$M(D), R \times 4.5 = Mg(7 - d)$		
	$M(A), 2.5R + (7 \times 2R) = Mgd$		
	$M(B), 6.5R + (2 \times 2R) = Mg(9-d)$		
	SC: $M(G), R(d-2.5) = 2R(7-d)$	M2 A2	2,1,0
	Solve for <i>d</i> , must be a numerical value	DM1	
	d = 5.5	A1	(6)
			(6)
	Notes for question 1		
	N.B. Allow M marks for equations if they use R_c and R_D		
	M1 Correct number of terms, dimensionally correct, condone sign errors and missing <i>g</i>		
	A1 Correct equation		
	M1 Correct number of terms, dimensionally correct, condone sign errors and		
	missing g		
	A1 Correct equation		
	DM1 Dependent on previous two M marks, for solving for d		
	A1 $d = 5.5$ oe Ignore an extra m (but not M)		
	N.B. If a is amitted consistently in both equations, all three A marks are evallable.		
	If g is omitted consistently in both equations, all three A marks are available. If they use Rg consistently in both equations, all three A marks are available.		
	If they have 3 equations, mark the ones that are used to obtain d .		
	If R and R are consistently the wrong way round, apply the scheme, unless an		
	MR gives a better total.		

Question Number	Scheme	Marks
2.	$P(2m) \xrightarrow{3u} O \longrightarrow O $	
2(a)	$2m \times 3u = 2mv + 4m \times 2u$ OR $I = 4m \times 2u \text{ and } -I = 2m(v - 3u) \text{ AND add to eliminate } I$	M1A1
	v = -u so speed is u	A1
2(b)	Opposite to its original direction, reversed, in opposite direction, direction QP , opposite direction to Q Direction changed is B0	DB1
2()	D 4	(1
2(c)	$R = 4mg$ $F = 4ma;$ $4mg \mu = 4ma \text{ (their calculated } a \text{ or unknown } a)$ $-\mu 4mgt = 4m(0 - 2u)$	B1 M1 A1
	$0^{2} = (2u)^{2} - 2a \left(\frac{6u^{2}}{g}\right) \text{ (their calculated } a \text{ or an unknown } a)$ $\mathbf{OR} \frac{6u^{2}}{g} = \frac{(0+2u)}{2}t \qquad \text{(their calculated } t \text{ or an unknown } t)$	M1A1
	$\mu = \frac{1}{3}$ correctly obtained	A1
		(1
	Notes for question 2	(10
2(a)	Notes for question 2 M1 Complete method to give equation in <i>m</i> , <i>u</i> and <i>v</i> only, dimensionally correct, correct no. of terms, condone sign errors and consistent cancelled <i>m</i> 's or extra <i>g</i> 's	
	A1 Correct equation	
24)	A1 <i>u</i> ; must be positive	
2(b)	DB1 Dependent on an answer of +u or -u in (a)	
2(c)	B1 cao Seen anywhere, e.g. on a diagram M1 Equation of motion (Allow <i>F</i> for friction at this stage) OR Impulse-momentum equation	
	A1 Correct equation with F substituted M1 Use of suvat to obtain an equation in u and a only	
	OR Use of impulse-momentum to obtain an equation in <i>u</i> and <i>t</i> only A1 Correct equation; equations must be consistent to earn both A marks.	
	A1 Accept 0.33 or better	

Question Number	Scheme	Marks
3(a)	$v^2 = 25^2 - 2 \times 6 \times 48$	M1
	$v = 7 (\mathrm{m s^{-1}})$	A1
		(2
3(b)	$\frac{25-13}{6}$ (2)	M1
	$13^{2} = 25^{2} - 2 \times 6s \mathbf{OR} 25 \times 2 - \frac{1}{2} \times 6 \times 2^{2} \mathbf{OR} \frac{(25+13)}{2} \times 2$ $\mathbf{OR} 13 \times 2 - \frac{1}{2} \times (-6) \times 2^{2} ((s =) 38)$	M1
	Total time = $\frac{(48-38)}{13} + 2$	DM1
	$\frac{36}{13} = 2\frac{10}{13}$ (s) (2.76923)	A1
		(4
3(c)	$\frac{25-13}{6}$ (2) (could be implied by 2.2)	M1
	$(0.2 \times 25) + (25 \times 2 - \frac{1}{2} \times 6 \times 2^{2}) $ (5 + 38)	M1
	$(0.2 \times 25) + (25 \times 2 - \frac{1}{2} \times 6 \times 2^{2}) $ (5 + 38) Total time = $\frac{48 - [(0.2 \times 25) + 38]}{13} + 0.2 + 2$	DM1
	$\frac{168}{65} = 2\frac{38}{65}$ (s) (2.58461538)	A1
		(4
		(10
2(a)	Notes for question 3	
3(a)	M1 Complete method to find v (condone sign errors) A1 cao	
3(b)	M1 Complete method to find time to reach 13 m s ⁻¹	
3(0)	M1 Complete method to find distance travelled in reaching 13 m s ⁻¹ ft on	
	their 2 if necessary	
	DM1 Dependent on previous two M marks, Complete method to find the total time, ft on their 2 and 38	
	A1 Correct answer. Allow 2.8 or better	
2(a)	M1 Complete method to find the time taken to reach 13 m s ⁻¹ once it starts	
3(c)	decelerating	
	M1 Complete method to find total distance travelled in reaching 13 m s ⁻¹ ft	
	on their 2 if necessary	
	DM1 Dependent on previous two M marks, Complete method to find the total time, ft on their 2 and 38	
	A1 Correct answer. Allow 2.6 or better	

Question Number	Scheme	Marks
	Allow column vectors throughout	
4(a)	$\mathbf{r} = -\mathbf{i} - 3\mathbf{j}$	B1
	$\tan \theta = \pm \frac{1}{3} \text{ or } \pm \frac{3}{1}$	M1
	162° or 198° nearest degree	A1
		(3)
4(b)	$\sqrt{(t-3)^2 + (1-2t)^2} = 2.5$	M1
	$4t^2 - 8t + 3 = 0$ $(5t^2 - 10t + 3.75 = 0)$	DM1A1
	$\sqrt{(t-3)^2 + (1-2t)^2} = 2.5$ $4t^2 - 8t + 3 = 0 (5t^2 - 10t + 3.75 = 0)$ $t = \frac{1}{2} \text{ or } \frac{3}{2} \text{ isw}$	M (A)1 A1
		(5)
		(8)
	Notes for question 4	
4(a)	B1 cao	
	M1 for any trig ratio of a relevant angle from their r	
	(trig ratio could be implied by a relevant angle)	
	(cosine could come from use of the scalar product of their \mathbf{r} with \mathbf{j})	
	A1 cao	
4(b)	M1 oe	
	DM1, dependent on first M1, for simplifying to a 3 term quadratic or to a	
	form from use of completing the square.	
	A1 correct quadratic	
	M(A)1 for t = 0.5	
	A1 for $t = 1.5$	

Question Number	Scheme	Marks
5(a)	$(\uparrow) \pm F = 0.2g - 2.5\cos\alpha$ Allow use of (μR) for F	M1 A1
	F = 0.46 (N) oe including fractions, upwards	A1
		(3)
5(b)	$(\uparrow)F + 0.2g = 6.125\cos\alpha$	M1A1
	$(\rightarrow) R = 6.125 \sin \alpha \qquad (4.9)$	M1A1
	$F = \mu R$	B1
	Solve for μ	DM1
	μ = 0.35 oe including fractions.	A1
	N.B. If F and R are interchanged in their equations, max B1 can be scored.	(7)
		(10)
	Notes for question 5	
5 (a)	M1 Correct no. of terms, condone sin/cos confusion and sign errors, allow if they have <i>T</i> instead of 2.5	
	A1 Correct equation . Allow $+ F$ or $-F$	
	A1 Need both magnitude (must be positive) and direction	
5(b)	M1 Correct terms, condone \sin/\cos confusion and sign errors errors allow if they have <i>T</i> instead of 6.125 (but M0 if using $T = 2.5$)	
	A1 Correct equation	
	M1 Correct terms, condone sin/cos confusion and sign error	
	allow if they have T instead of 6.125 (but M0 if using $T = 2.5$)	
	A1 Correct equation	
	B1 $F = \mu R$ seen but B0 if they use a value for R found in (a)	
	DM1 Dependent on both M's	
	A1 cao	

Question Number	Scheme	Marks
6(a)	$0 = u - 9.8 \times 2.5$ oe using gradient of graph. Allow g or 9.81 instead of 9.8	M1
	$u = 24.5 \text{ or } 25 \text{ (m s}^{-1})$ Allow 2.5g	A1
	Many other methods	(2)
6(b)	$s = 24.5 \times 2 + \frac{1}{2} \times 9.8 \times 2^2$	
	OR $s = 24.5 \times 7 - \frac{1}{2} \times 9.8 \times 7^2$	
	OR $s = \frac{1}{2} \times 9.8 \times 4.5^2 - (24.5 \times 2.5 + \frac{1}{2} \times (-9.8) \times 2.5^2)$	M1A1ft
	OR $s = \frac{1}{2} \times 9.8 \times 4.5^2 - \frac{1}{2} \times 9.8 \times 2.5^2$	
	Many other methods, using <i>suvat</i> and/or the graph (e.g. similar triangles and area under graph)	
	Allow g or 9.81 instead of 9.8 in all equations.	
	68.6 or 69 (m)	A1
		(3)
		(5)
	Notes for question 6	
	For use of $g = 9.81$, which will only affect the final A mark in each part,	
	penalise once for whole question	
6(a)	M1 for complete method using <i>suvat</i> or the graph to produce an equation in <i>u</i> only, with correct number of terms, condone sign errors.	
	A1 cao (must be positive)	
6(b)	M1 Complete method to give a final displacement,	
	condone sign errors within a <i>suvat</i> equation.	
	Alft Correct equation ft on their u	
	A1 cao	

Question Number	Scheme	Marks
7(a) (i)	$T - 2mg\sin\alpha - F = 2ma$	M1A1
(ii)	3mg - T = 3ma	M1A1
()	N.B. Ignore the labelling (i) and (ii)	(4)
7(b)	$R = 2mg \cos \alpha$ Allow if this appears in (a).	M1A1
()		
	$F = \frac{1}{2}R$	B1
	Substitute for trig. and solve for <i>a</i> ,	DM1
	1	
	$a = \frac{1}{5}g$	A1
		(5)
	_ 12mg	
7(c)	$T = \frac{12mg}{5} (23.52m)$	DM1
	$2T\cos\left(\frac{90^{\circ} - \alpha}{2}\right) \mathbf{OR} \sqrt{T^2 + T^2 - 2T^2\cos(90^{\circ} + \alpha)} \mathbf{OR}$ $\sqrt{(T\cos\alpha)^2 + (T + T\sin\alpha)^2}$	M1
	Substitute for trig and T to obtain an expression in m or mg	DM1
	$\frac{48\sqrt{5}mg}{25}$; Accept 4.3mg or better, 42m or 42.1m	A1
		(4)
7(d)	Tension is the same on either side of the pulley , tension across the pulley is the same.	B1
	B0 for tension is same for A and B or is the same for both strings etc	(1)
		(14)
	Notes for question 7	
	N.B. If <i>m</i> 's are consistently missing, mark (a) and (b) as a MR	
7(a)	M1 Correct no. of terms, condone sin/cos confusion and sign errors	
	A1 Correct equation	
	M1 Correct no. of terms, condone sign errors	
	A1 Correct equation	
7(1)	N.B. Could have a replaced by (-a) in both	
7(b)	M1 Correct no. of terms, condone sin/cos confusion and sign errors	
	A1 Correct equation B1 Seen, possibly on a diagram or in (a)	
	DM1, dependent on the two M's in (a), for solving 2 simultaneous equations or	
	using a whole system equation to find a	
	A1 cao	
7(c)	DM1, dependent on the relevant 1^{st} or 2^{nd} M1 in (a), for <u>attempt</u> to find their T , must be of form km or kmg . Apply isw if they 'cancel' m 's.	
	M1 for a correct expression in terms of T and α only; α does not need to be	
	substituted	
<u></u>	DM1, dependent on previous M, for substituting in their T and for trig, to give	
	an expression of form km or kmg	
	Al cao	
7(d)	B1 for any equivalent statement. B0 for incorrect extras.]

Question Number	Scheme	Mark	S
	Allow column vectors throughout.		
8(a)	$(4\mathbf{i} + 6\mathbf{j}) = (-2\mathbf{i} + 9\mathbf{j}) + 0.6\mathbf{v}$ oe	M1	
	$(10i-5j) (km h^{-1}) *$		
	N.B. 1 more line of intermediate working needed and must state the answer in i	A1*	
	- j form to earn this mark.		
			(2)
8(b)	$\mathbf{r} = (-2\mathbf{i} + 9\mathbf{j}) + t(10\mathbf{i} - 5\mathbf{j}) \text{ (km)}$ oe	M1 A1	
			(2)
8(c)	$t = 1.8$: $\mathbf{r} = (-2\mathbf{i} + 9\mathbf{j}) + 1.8(10\mathbf{i} - 5\mathbf{j})$	M1	
	$\mathbf{r} = 16\mathbf{i}$	A1	
	$t = 2$: $\mathbf{r} = (-2\mathbf{i} + 9\mathbf{j}) + 2(10\mathbf{i} - 5\mathbf{j})$ OR $\mathbf{r} = 16\mathbf{i} + 0.2(10\mathbf{i} - 5\mathbf{j})$	M1	
	$\mathbf{r}_L = 19\mathbf{i} \text{ (km)}$	A1	
			(4
8(d)	-2+10t=19	M1	
	t = 2.1	A1	
	$\mathbf{r} = (-2\mathbf{i} + 9\mathbf{j}) + 2.1(10\mathbf{i} - 5\mathbf{j})$	DM1	
	$\mathbf{r} = (19\mathbf{i} - 1.5\mathbf{j}) \text{ (km)}$	A1	
		111	(4
			(12
	Notes for question 8		
8(a)	M1 Correct structure with $t = 0.6$		
	A1* Given answer correctly obtained		
0(1)	Allow verification.		
8(b)	M1 Correct structure		
	A1 cao M1 Correct unsimplified substitution of $t = 1.8$ into their r		
8(c)	OR use $t = 1.2$ with $(4\mathbf{i} + 6\mathbf{j})$ as start point		
	· • •		
	A1 cao M1 Correct unsimplified substitution of $t = 2$ into their \mathbf{r}		
	OR use $t = 1.4$ with $(4\mathbf{i} + 6\mathbf{j})$ as start point		
	OR use $t = 0.2$ and their first answer as start point		
	A1 cao		
8(d)	M1 Equating i component of their r to i component of their \mathbf{r}_L		
	A1 cao		
	DM1 Dependent on previous M1, for substituting their value of t into their \mathbf{r}		
	A1 cao		